Homogeneous extensions of positive linear operators

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Localization operators on homogeneous spaces

Let $G$ be a locally compact group, $H$ be a compact subgroup of $G$ and $varpi$ be a representation of the homogeneous space $G/H$ on a Hilbert space $mathcal H$. For $psi in L^p(G/H), 1leq p leqinfty$, and an admissible wavelet $zeta$ for $varpi$, we define the localization operator $L_{psi,zeta} $ on $mathcal H$ and we show that it is a bounded operator. Moreover, we prove that the localizat...

متن کامل

Definitizable Extensions of Positive Symmetric Operators in a Krein Space

The Friedrichs extension and the Krein extension of a positive operator in a Krein space are characterized in terms of their spectral functions in a Krein space.

متن کامل

About a class of linear positive operators

In this paper we construct a class of linear positive operators (Lm)m≥1 with the help of some nodes. We study the convergence and we demonstrate the Voronovskaja-type theorem for them. By particularization, we obtain some known operators. 2000 Mathematics Subject Classification: 41A10, 41A25, 41A35, 41A36.

متن کامل

Extensions of linear operators from hyperplanes of l ( n ) ∞

Let Y ⊂ l (n) ∞ be a hyperplane and let A ∈ L(Y ) be given. Denote A = {L ∈ L(l (n) ∞ , Y ) : L | Y = A} and λA = inf{‖L‖ : L ∈ A}. In this paper the problem of calculating of the constant λA is studied. We present a complete characterization of those A ∈ L(Y ) for which λA = ‖A‖. Next we consider the case λA > ‖A‖. Finally some computer examples will be presented.

متن کامل

Diagonalization of Homogeneous Linear Operators in Biorthogonal Wavelet Bases

We show how it is possible to diagonalize a certain class of homogeneous linear operators in a biorthogonal wavelet basis. Given a linear operator and a biorthogonal wavelet basis we construct a new biorthog-onal wavelet basis such that by analyzing a function in the new basis and multiplying the wavelet coeecients by a scale dependent factor we get the wavelet coeecients of the transformed fun...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 1961

ISSN: 0002-9947

DOI: 10.1090/s0002-9947-1961-0120334-8